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Abstract

This paper presents a data representation system to encode musical chords used in a classical tonal context.
Whilst a number of approaches to representing musical chords have been proposed for various computational
or data retrieval purposes, the present project differs in its being motivated and shaped by music-pedagogical
intentions, which include offering automated error feedback. Hence, instead of a data-driven pattern-
discovery approach, we adopt a rule-based method using declarative rules. Both the encoding system and the
formulated rules are based on classical theory of functional harmonic voice leading. The ultimate aim is to de-
velop a musically-intelligent interactive system that automates both the evaluation of tonal progressions and
the provision of assessment feedback for the purpose of teaching western classical tonal theory. In a nutshell,
the computational system’s input are chords drawn from the major-minor tonal system. Roman numerals with
figured-bass indications (e.g. I° vii°4/2) are the chord symbols to be encoded. The encoding reflects a number
of pertinent theoretical elements: (i) the key context, (ii) the scale degree of the chord, (iii) the chord type, and
(iv) the chord inversion. A rule-based system based on JBoss Drools and the Rete algorithm is then designed
to evaluate chord progressions based on considerations of root motion, bass movement, and other tonal
voice-leading factors. The musical intelligence of this system therefore simulates human musical thinking as
encapsulated in a typical undergraduate theory of harmony.
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1. Modeling tonal harmony

choice sometimes depends on specific applica-
tional interests. For the purpose of automating
analysis of tonal progressions, especially if
pedagogical use is central to the agenda, the
preference will naturally be for the former di-
rection.

The grammar of music harmony has a com-
plexity that defies simple computational rep-
resentation and that has certainly engaged the
imagination of music theorists for centuries.
Broadly speaking, in music computational en-
deavours, two directions have been explored—

either to model after human musical thinking,
or to aim for an output capability that is com-
parable to human efforts, no matter if the sys-
tem is musically naive or whose “musical think-
ing” is opaque to the system designer. Both
approaches have their pros and cons, the

In our project, we necessarily align with
common musical understanding in order to
develop an interactive system that not only
evaluates the validity of chord progressions in
the manner of a trained musician, but offers
automated error feedback to the user similar



to that given by a music theory teacher. The
knowledge base of this Al system—from its
data encoding to the declarative rules and con-
straints implemented—is grounded in music
theory as opposed to being based on statistical
comparison of patterns or structures. Within
the confines of this paper, we shall present in
more detail the symbolic representation sys-
tem and only briefly touch on the rule-based
system that is used for the evaluative algo-
rithm.

2. Input data

In designing the evaluation sub-task, one of
the first decisions to be taken concerns choos-
ing the type of data to work with. Given that
music is a sound art, one would expect that
from a human-and-sound interaction point of
view, the preferred input would be sonic in na-
ture. Indeed, there have been quite a number
of such precedents (Conklin, 2002; Dixon,
2010; Mauch & Dixon, 2010; Mauch, Noland, &
Dixon, 2009). However, our pedagogical objec-
tive is to focus the students’ learning on mas-
tering the basic principles of harmony, ex-
pressed in Roman numeral and voice-leading
terms. Hence, we have chosen not to have
students use audio input (e.g. playing the pro-
gression on a midi keyboard or recording the
progression) or even music-score notation, but
to input using the Roman numeral system
taught in class. Of course, for future develop-
ments of the system, we can add a conversion
component to accept alternative “raw” inputs,
but our present focus is to develop the evalua-
tive function itself, which is the core of the sys-
tem.

By opting for the abstract form of Roman
numerals, we are also simplifying the overall
computational task by eliminating the need to
handle non-harmonic tones, a complication
that a number of researchers have chosen to
tackle based on their differing motivations but
only succeeded to a limited extent (Harte,
Sandler, Abdallah, & Gomez, 2005 Mauch,
2010; Maxwell, 1992; Sapp, 2007; Winograd,
1968). Nor do we need to deal with key-finding
(like those in Maxwell, 1992; Sapp, 2007;
Taube, 1999; Winograd, 1968) or the parsing of
different types of musical texture (e.g. Max-

well, 1992). Admittedly, the use of Pop chord
symbols (e.g. Anglade & Dixon, 2008;
Granroth-Wilding & Steedman, 2012; Tem-
perley & Sleator, 1999) may sidestep a number
of the above computational challenges, but it
still entails the additional sub-tasks of key-
finding and of determining chord relationship,
the two being strongly mutually dependent.

Having opted for the Roman numeral sys-
tem, there is still the need to choose the par-
ticular version. In accordance with the theory
that is taught in our context, our Roman nu-
meral system differentiates between chord
types, as illustrated in Table 1. This separation
between major and minor key paves the way
for handling borrowed/mixture harmonies for
future extension of the system, which current-
ly deals only with diatonic harmonies. We use
figured-bass numbers to indicate the chord
inversion—for example, 6/3 for first inversion,
6/4 for second, and so forth—as opposed to
using suffix alphabet letters (e.g. Ib, ivc, V,d).
The notion of harmonic function is also inte-
gral. Hence, cadential six-four is clearly distin-
guished from its other counterparts, which re-
tain their Roman numeral. For example, | 6/4
may be a neighbouring or passing six-four, but
it is decidedly not a cadential six-four, which is
symbolized as C 6/4.

Major key Minor key

[ [

i, i, i, ii°,

ii |l

IV® iv®

V, V4, v, V, V4,

vi oV

vi®®, vii®, "VII, vii®, vii®,

Table 1: List of sample diatonic chords for the ma-
jor and minor keys

3. Data representation

The next step is designing the data representa-
tion system. Whilst there are quite a number of
versions currently available, none of them en-
tirely meets our pedagogical need. This is not
surprising since the suitability of any represen-
tation system depends very much on the task
it is designed to serve, and it must factor in



both the context of the notation itself as well
as the processes that it is subject to (Wiggins,
Miranda, Smaill, & Harris, 1993).

In our case, the data representation must
be aligned with the tonal theory that is taught.
Specifically, it must reflect diatonic and chro-
matic relations as well as other features perti-
nent to harmonic voice-leading considerations.
With this in mind, we adopt a four-element
vector <a,b,c,d> in which a represents the key
(1 = major, 2 = minor), b represents the scale
degree (1 to 7), ¢ represents the chord type (1 =
major triad, 2 = minor triad, 3 = diminished tri-
ad) and d represents the chord inversion (o =
root position, 1 = first inversion, and so forth).
For scale degree indications, the major-key
scale step is used as a reference. Hence, in the
minor key, the mediant chord is ®lll and is en-
coded as “36", where the second digit "6" sig-
nifies the chromatic lowering ("6” morphologi-
cally resembles the flat sign). On this basis,
mixture/borrowed harmonies can be easily
distinguished subsequently.

For seventh chords, the encoding rationale
is a little more complicated. With extended
major chords, a second digit 7" is added. In
the context of classical usage, whether the
added seventh is a major or minor one de-
pends on the chord in question. For example,
in the major key, ¢ = 17 will mean added major
seventh in the case of |, and IV, but added mi-
nor seventh in the case of V,. Extended minor
chords are more straightforward since only
minor seventh (c=27) is typically added in clas-
sical harmonies. To differentiate between full-
and half-diminished seventh chords, “37” and
“34" are used respectively. Additionally, we
assign the cadential six-four a special category
(c = 564, regardless of the key).

With this chord encoding system, a pro-
gression would be represented as a string of
vectors. For instance, the commonplace pro-
gression ii®®s-V,-i in the minor key is encoded
as <2,2,34,1>, <2,5,17,0>, <2,1,2,0>.

4. A case for declarative rules

In music, harmonic grammar is either grasped
intuitively by musicians or explicitly learnt. To
model this grammar, music computation re-

searchers either induce such rules from a set of
data or adopt declarative rules based on
known theory. While the statistical approach
of the former may vyield relevant results, we
have opted for a rule-based approach for the
following reasons:

i. The musical logic of the “discovered” rules
remains opaque, hence inductively-derived
rules are ill-suited to provide the specific er-
ror feedback that we desire, especially one
that is aligned with the theory that is
taught.

ii. Even if we attempt to interpret the “discov-
ered” rules in musical terms, it is likely to be
a tedious process with limited benefits. For
example, one fairly recent inductive logic
experiment applied to jazz and pop harmo-
nies has yielded over 12000 rules, most of
which cover less than 5% of the data
(Anglade & Dixon, 2008).

iii. The significance of inductively-derived rules
is based on statistical count rather than
musical consideration, so unless one is in-
terested only in the input-output efficiency
of the model, one would need to further as-
certain the music-theoretic validity of the
rules. In other words, frequency of occur-
rence and statistical significance do not au-
tomatically equate with musical signifi-
cance, the latter needs to be humanly eval-
vated (Conklin & Anagnostopoulou, 2001),
and for our purpose, this would be neces-
sary.

5. Overview of rule-based system

Since this paper is focused on presenting the
data representation aspect, we shall offer here
a quick overview of our rule-based system. In
computer science, a rule-based system em-
bodies knowledge that can be used to inter-
pret information in useful ways. In artificial
intelligence applications, such domain-specific
expert system emulates the decision-making
ability of a human expert. Our rule-based sys-
tem is based on JBoss Drools, which is a Busi-
ness Logic integrated and unified platform for
a rule engine to operate with a particular work
flow. Rete algorithm, an efficient pattern
matching algorithm, is the basis of our Drools
rule engine.



Our musical rules are formulated based on
considerations of root motion, bass move-
ment, and other tonal voice-leading factors.
These can grow to unwieldy dimensions—
especially as we move towards more advanced
harmonic styles subsequently—such that the
traditional “if-else” algorithm will be less effi-
cient in processing the input data. We there-
fore chose to develop a rule-based system.

There are broadly two categories of rules
implemented. The first stipulates certain con-
straints in the light of the specific kind of har-
monic progressions we wish the user to be fo-
cusing on. For example, “All chords in a pro-
gression must be in the same key” limits the
user to diatonic progressions for now. The sec-
ond category pertains more specifically to
harmonic voice-leading considerations. For
instance, “If the current chord inversion (d) is 2
and the current nature (c,) is 564, then the next
scale degree must be 5 and its d value must be
o or 3”; this stipulates the two common resolu-
tions of the cadential six-four chord. In this
connection, if this second-inversion chord is a
passing or neighbouring one, three other rules
are implemented to ensure proper voice-
leading handling of this unstable harmony.

6. Beta testing

As a preliminary test, we have used a number
of Bach’s harmonized chorales from the Rie-
menschneider collection to test the system.
Bach’s chorales have been a popular choice
amongst music computation researchers
(Conklin, 2002; Ebcioglu, 1992; Kroger, Passos,
Sampaio, & de Cidra, 2008; Sapp, 2007; Taube,
1999; Winograd, 1968). For our purpose, not all
progressions from Bach are amenable for test-
ing our system, which currently deals only with
diatonic progressions. Most of Bach’s progres-
sions involve tonicization; these are excluded
since we have not included applied chords or
any other chromatic harmonies for that mat-
ter. On the other hand, some of Bach’s harmo-
nizations are modal rather than functionally
tonal in nature; these then wonderfully serve
to test the system’s discriminating ability. In
general, based on the above selection consid-
erations, some of the test progressions have
involved as many as ten chords. The testing

was done manually by the first author and any
anomalous error feedback was used to ascer-
tain whether the set of implemented rules
needed to be revised or expanded.

7- Interim evaluation and future work

Thus far, our system can by and large success-
fully evaluate progressions drawn from over
fifty chorale harmonizations and provide ap-
propriate error feedback. This includes correct-
ly detecting modal progressions that violates
certain tonal functional rules. A number of
faulty progressions have also been created to
further test the system. The next phase of test-
ing will involve student-created ones as well as
progressions drawn from other tonal reper-
toire.

Once the robustness of the system is suffi-
ciently tested, we will expand the system to
embrace chromatic harmonies such as applied
chords and modal mixtures. In the longer term,
other harmonic styles (e.g. pop, Jazz) can be
evaluated by changing the list of chords and
set of rules. In fact, the encoding system itself
is flexible enough to be modified to tackle
even non-triadic harmonies, with the encoding
vector being shortened or extended according-

ly.

References

Anglade, A, & Dixon, S. (2008).
Characterisation of harmony with Inductive Logic
Programming. Proceedings of the gth ISMIR
Conference on Music Information Retrieval (pp. 63-
68).

Conklin, D. (2002). Representation and
discovery of vertical patterns in music. In C.
Anagnostopoulou, M. Ferrand & A. Smaill (Eds.),
Music and Artificial Intelligence: Proceedings the
ICMAI Conference (pp. 32-42). Berlin, Heidelberg:
Springer-Verlag.

Conklin, D., & Anagnostopoulou, C. (2001).
Representation and discovery multiple viewpoint
patterns. Paper presented at the 2001 International
Computer Music Conference, La Habana, Cuba.

Dixon, S. (2010). Computational modelling of
harmony. Paper presented at the 7th International
Symposium on Computer Music Modeling and
Retrieval.



Ebcioglu, K. (1992). An expert system for
harmonizing chorales in the style of J.S. Bach. In M.
Balaban, K. Ebcioglu & O. Laske (Eds.),
Understanding music with Al: Perspectives on music
cognition (pp. 295-333). Cambridge, MA: AAAI Press
& MIT Press.

Granroth-Wilding, M., & Steedman, M. (2012).
Statistical parsing for harmonic analysis of jazz
chord sequences. Proceedings of the International
Computer Music Conference.

Harte, C., Sandler, M. B., Abdallah, S. A,, &
Gomez, E. (2005). Symbolic representation of
musical chords: A proposed syntax for text
annotations. Proceedings of the 6th ISMIR
Conference on Music Information Retrieval (pp. 66-
71).

Kroger, P., Passos, A., Sampaio, M., & de Cidra,
G. (2008). Rameau: A system for automatic
harmonic analysis. Proceedings of the 2008
International Computer Music Conference (pp. 273-
281).

Mauch, M. (2010). Automatic chord transcription
from audio using computational models of musical
context. Unpublished Ph.D., Queen Mary,
University of London, London.

Mauch, M., & Dixon, S. (2010). Simultaneous
estimation of chords and musical context from
audio. IEEE Transactions on Audio, Speech, and
Language Processing, 18(6), 1280-1284.

Mauch, M., Noland, K., & Dixon, S. (2009).
Using musical structure to enhance automatic
chord transcription. Proceedings of the 1oth ISMIR
Conference on Music Information Retrieval (pp. 231-
236).

Maxwell, H. J. (1992). An expert system for
harmonizing analysis of tonal music. In M. Balaban,
K. Ebcioglu & O. Laske (Eds.), Understanding music
with Al: Perspectives on music cognition (pp. 335-
353). Cambridge, MA: AAAI Press & MIT Press.

Sapp, C. S. (2007). Computational chord-root
identification in symbolic musical data: Rationale,
methods, and applications. Computing in
Musicology, 15, 99-119.

Taube, H. (1999). Automatic tonal analysis:
Toward the implementation of a music theory
workbench. Computer Music Journal, 23(z), 18-32.

Temperley, D., & Sleator, D. (1999). Modeling
meter and harmony: A preference-rule approach.
Computer Music Journal, 23(1), 10-27.

Wiggins, G., Miranda, E., Smaill, A., & Harris, M.
(1993). A framework for the evaluation of music
representation systems. Computer Music Journal,

17(3), 31-42.

Winograd, T. (12968). Linguistics and the
computer analysis of tonal harmony. Journal of
Music Theory, 12, 2-49.



